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WIS ORTNE S

ABSTRACT

N\

3 3 The strain energy of a spheroidal inclusion was evaluated
- exactly using the Eshelby theory. Numerical results for an
oblate spheroid are presented in a parametric form in terms of
the transformation strain tensor. Using atomisitc traensformation
mechanisms, the transformation strain was determined for bce-hep
martensitic transformation in Ti and its alloys. The lattice
correspondence satisfied the Burgers relationship and the c/a-ratio
in the preduct phase was taken as 1.586. The habit plane was pre-
dicted on the basis of the strain energy minimization principle.
Results of the calculation indicate that the strain energy is
minimized when the morphology of hcp Ti martensite is a thin
disc-shaped inclusion lying on a plane close to (9 9 13 6, __l_f'.._ e B
excellent agreement with experimental observations.

The present approach is discussed in detail and compared with
the crystallographic theory based on the invariant plane strain
hypothesis.




1. INTRODUCTION

Because of the technological importance of ferrous martensites,
various aspects of martensitic phase transformation have been investi-
(1,2) e phenomenological crystallographic theory
of martensite formation was developed in the 1950's and is based on the

gated extensively.

concept of the invariant habit plane. The theory resolves the total
shape deformation, F, into a pure strain that converts the parent into
the product lattice, P, a lattice invariant shear that produces two
undistorted planes, 3, and a rotation that ensures the invariant inter-
face plane, R. The basic hypothesis of the theory is that the total
shape deformation is an invariant plane strain. The whole of the volume
change of the transformation is produced as an expansion or contraction
normal to the habit plane as well as a small dilatation within the habit
plane in the Bowles-Mackenzie (B-M) formulation.‘®) The various formila-
tions of the theory were presented by Bowles and }hclcenzie,(3) Bullough
and Bilby, ™ and Wechsler et al.(®) and in a mdified form by Ross and

(6 et al. These formulations have been successful in

Crocker,
accountting for the crystallographic characteristics of many trensformations,
such as ferrous transformations with the {3 15 10}; habit plane and the
boc-hep transformation in TS and Zr with the {334} rabit plane.t)

However, a variety of martensites are difficult to reconcile with the
theory. This group includes ferrous martensites with the habit plane of

' {225}1,, {ZSQ}P, {1“2}}., etc. and Ti martensites with the {3M}B habit
plane.1+7) 1t ig aleo mot clear from the theory shich factars are
responsible for various crystallographic characteristics observed in

different alloys.




R L i

It is well known that the elastic deformation in the particle of
new phase and in the parent lattice controls, to a large extent, a
martensitic transformation and the coherent stage of a phase trans-

formation.(e) In the above-mentioned arystallographic theory, it is

assumed that a thin plate martensite with the undistorted interfaces
satisfies the criterion of a strain energy minimum. This assumption

is valid in the cases of plate martensites. C}mistian(g)

considered
accommodation strains in the formation of a martensite plate which is an
oblate spheroid. The treatment is based on the Eshelby theory of the

(10) but is valid only

strain energy in a constrained transformation,
for a large diameter-to-thickness ratio. His result shows that the
strain energy per unit volume tends to zero with an increasing
diameter-to-thickness ratio. It is clear that more exact evaluations

of the strain energy via a generalized elasticity treatment are

necessary in order to develop a new theory that is based on the principle
of minimm free energy. Furthermore, the atomistic mechanisms involving
dislocations, stacking faults and twins must be integrated into the new
theory so that only the probable modes of deformation are to be considered.

In this paper, we establish the correspondence between the crystal-
lographic and Eshelby theories and describe the calculation of the strain
energy of spheroidal inclusions using the Eshelby theory. The results
are combined with the consideration of atomistic mechanisms in a detailed
analysis of martensitic transformation in Ti alloys. It is shown that
the results of strain energy minimum determination correlate well with
experimental observations on the habit plane. Other features of the present
approach is discussed.
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2. Theoretical OConsiderations
2.1 The Eshelby Theory

Eshelby(m) has obtained a general solution for the elastic state
of an ellipsoidal inclusion and the matrix, when the inclusion within
| an isotropic elastic solid undergoes a change of shape and size, which
‘ would be homogeneous, but for the contraint imposed by the matrix. Be-
cause of the presence of the matrix, internal stresses exist both inside
and outside the inclusion. In order to find the elastic field, Eshelby
v| uses a set of five imaginary operations, as shown in Fig. 1. These
| are
(a) Cut around the inclusion which is to transform and remove
it from the matrix,
(b) Allow the transformation to proceed without the constraint;
namely, stress-free transformation defined by eig,
(c) Apply surface tractions to restore the original shape of the
inclusion,
(d) Replace the inclusim into the hole in the matrix and rejoin the
material across the cut,
(e) Spring back to the self stress state by the release of the

surface tractions.

The net effect of these operations is essentially equivalent to the total
shape deformation, F, of the crystallographic theory; that is, Operation b
corresponds to the lattice deformation, RP, and Operation ¢ to the lattice
invariant shear, 5. Since the crystallographic theory deals with the
constrained condition, Operations a and d are omitted. Further the
assumption of a very thin plate shape leads to vanishing strain energy

, 80 that the relaxation process of Operation e needs not be considered.
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' On the other hard, only pure shear strain (or its combination) is

1 allowed for 3 in contrast to any homogeneous strain permissible in

? Operations b and c. This leads to the main distinction between the two
approaches. The Eshelby theory provides no shape change after Operations

d and a limited shape change or rotation following Operation e, whereas
the total shape deformation, F is merely reduced to the state of an in-
variant plane strain in the crystallographic theory.

The total strain energy in matrix and inclusion, E, is obtained

by
1 f 1 1t
E = C.. ve AVE - = .o .. dv 1)
z total vol. 3 elj z '/I'Ulj elj
where °ij¥ is the stress in the inclusion, and VI is the volume of the

inclusion, and the summation of repeated indices is implied. In the

case of an ellipsoidal inclusion, 0.]-: in it is uniform and is given by

1]
I._ t t
where the cijkz are the elastic stiffness and the SkR:m are the coefficients

relating the transformation strain em'rt1 and the constrained strain eki by

eki * Siomn enl;tm- ‘ (3)

While the evaluation of E is cumbersome, the solution to the elasticity

problem of transformation exists in principle. Thus, the remaining tasks

are to obtain suitable ei;

establish a strain energy and free energy minimum condition(s) which depends
strongly on geometry.

for a specific transformation mechaniam and to




2.2 The Strain Energy of Spheroidal Inclusions

Eshelby described the general solution for Sksum in terms of
elliptic intergrals, from which E can be obtained. To date, however,
E's for only few special cases have been evaluated. While the Eshelby
theory is valid for general ellipsoids, we shall treat only spheroidal
inclusions. This greatly simplifies the calculation without sacrificing
the applicability to phase transformation problems. It is also assumed
that the elastic constants of the inclusion are identical to those of the
matrix and that only one inclusion is present in an infinite media.

This section presents the solutions of E's for several simple cases
and a general solution for an oblate spheroidal inclusion. Consider a
spheroidal inclusion, the major axes of which coincide with the coordinate
axes; namely

(xl/a)2 + (x2/b)2 + (x:‘)/c)2 =1 )

Two of the constants are identical, e.g., a = ¢. The aspect ratio k is
defined as k = b/a = b/c for this case. Fig. 2 shows such an inclusion
with k < 1 (an oblate spheroid). In the expressions below, Poisson's ratio
is always taken to be 1/3.
Case 1.

When the only nonzero components of e;.:.j are e‘{z z e12:1’ the strain
energy I:‘.l is given by

E = alu(elg)vI, Vp = %w abc (5

where o is a constant that depends on the orientation and the aspect
ratio of the inclusion and p is the shear modulus. @) can be expressed

exactly in terms of elliptic integrals, but approximate expressions for

i




o are listed in Table I. The range of k where these are valid to with-

in 5% of the exact values is also given on thé basis of a comparison
with exact calculations.

When all the components of e;.:_j except egz vanish, the strain energy
E, is given by

- t
E2 = a, u(e22) VI . (6)

The approximate expressions for a, are tabulated in Table I. El and E,
have no interaction term so that the sum of the two gives the total strain

energy correctly.

Case 3.
When all the elements of ei§ are nonzero, the strain energy Ey is
given by o.F e.f v./2. When an oblate, spheroidal inclusion witha =c > b

exists in the matrix, the strain energy is given by

2
. t t t ot t, t t
Ey=uVy {a‘l (eu * e33) ta) ey eg3 tag (ell * eaa) €2
2 2 2]
t (t ( t)’] ( t }
+ au(ezz) * as[ e12) Yy l] tag e13) ’ N

where the numerical values of coefficients a, through ag are plotted
against aspect ratio k(= b/a) in Fig. 3. For oblate, spheroids of

different configurations, e.g., a=b>cora<bz=c, E, is obtained

by interchange of the indices of egj.
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2.3 The Present Theory--An Outline

The main objective of this study is to combine the atomistic
mechanism of martensitic transformation with the generalized Eshelby

treatment. The present theory consists of the following steps:

f (1) Determine the transformation strain (egj) based on the lattice
: correspondence ard lattice parameters of the parent and product
phase as well as on the probable mode of the eTi:j .

(ii) Evaluate the total strain energy of a spheroidal inclusion and
the matrix as a function of the shape and orientation of the
inclusion using the Eshelby tensor Sijkl obtained from e;?_j .

(iii) Determine the strain energy minimum conditions and the habit

orientations. The minimum free energy condition can be deduced

by including the interfacial energy term.

Although no restriction is placed on e;?_j » generally etij is decomposed

into one or two atomic shear mechanisms and dilatation terms. It is
assumed that both the inclusion and matrix are isotropic and homogeneous.
In this paper, we describe a specific application of the present theory

to martensitic transformation in Ti alloys. Details of the calculation are

presented in the following sections.

2.4 The Strain Energy Calculation

When the major axes of a spheroidal inclusion are parallel to the

coordinate axes, E can be evaluated by the procedures in Section 2.2,

3 and the inclusion geometry are kmown. However, these orientations

are not necessarily the minimum energy configuration. In order to determine

t
once e
1




E for a spheroidal inclusion of arbitrary orientation, the coordinate
axes are transformed to coincide the major axes of the inclusion. This

requires the simultaneous transformation of etij into the new coordinate

system, but enables the subsequent use of the procedures in Section 2.2.

When e’i:j in the original coordinate system is given, the rotation

of the coordinate by angle € about the x, axis, as shown in Fig. 4,

results in a new strain tensor,

. /oose -sind O €11 €17 213 cosf sing O
(eij)e © | sin® cos® 0 )| e, e,, €3 -sin cosé O (8)
\ 0 0 1 €13 €93 €33 0 0 1/

Since the inclusion is spheroidal, another rotation by angle ¥ about one
of the new coordinate axes, e.g., the x_{ axis, produces the desired re-
orientation effect and enables the evaluation of E. However, most of the
camponents of transformation strain in the doubly rotated coordinate
system are nonzero and, therefore, the most general formula for E must
be used. After the two rotation operations, a new transformation strain

tensor is given by

1 0] 0 1 0 0
t _ . t .
(eij)e,w =l 0 cosp -siny (eij )6) 0 cosyp sing (9)
0 simy cosy 0 -siny cosy

3. Bee to hop Martensitic Transformation
The transformation of high temperature bec phase of Ti and Zr alloys
during quenching is martensitic and results in at least four structures,

including hep, fec, orthorhombic and fee or'thorhanbic.(ll) The hcp

martensite is most common and occurs in Ti, Zr, Ti-Mo alloys, Zr-Nb alloys

S s
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and others. In pure metals and other dilute alloys, the lath martensite
forms, whereas the plate martensite occurs with increasing solute content.
The habit plane is typically (33'+)B or (8 9 12)B. The orientation relation-
ship of the plate martensite to the matrix has been established to be that

due to Bur'gers,(u) i.e.,

(011)3//(0001)H, [1I1]B//[11§0]H .

The experimental orientation relations in Ti and Zr also are close to to
the Burgers relationship.

The atomic movements for this transformation can be accomplished by
shearing on (211) along [1I1]; and a dilation along [211]; as shown in
Fig. 5. The stacking of atams on (011)B is identical on every other layer
of (011 )B and the illustrated atom movements result in the correct atomic
arrangement and stacking sequence of (DOOl)H. However, the atoms on the
middle layer must be moved as well. This is the so-called atomic shuffle,
and is ignored in the present theory. This atomistic mechanism was first
proposed by Burgers and satisfies the Burgers orientation r'elationship.(lz)
When the nearest neighbor distance remains unchanged, an ideal hcp lattice
is produced by the atomic movements and the c/a-ratio is 1.633, In the
subsequent discussions, we shall always refer to the directions [ll'lJB,
[ﬁl]B and [011]; as x;, x,, and x, axes, respectively (cf. Fig. 2). These
correspord to the direction of shear, the normal to the plane of shear and
the normal to the plane containing all the atomic movements, respectively.
In terms of this coordinate system, the transformation strain for the above

atomic movements is given by -

0 .088 0
t .
0 0 0
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Since the c/a-ratio of Ti martensite may be approximated by that of pure
Ti, 1.586, additional dilatational strain components must be considered.
Assuming that the interplanar spacing of (01l)p remains unchanged, the
transformation strain for this case becomes
0.030 0.088 0
4 0.088 -0.051 0 (11)
0 0 0 .

The ratio of lattice parameters of the product and parent lattices,
aH/a.B, is equal to 0.892 in this case, which is slightly smaller than an
experimentally observed value of 0.899. The transformation strain of
Eq. (11) compares to the one for zirconium obtained by Kelly and Groves,
which is given in the present coordinate system as

0.033 0.094 0

e;'cj = (12)
0.0% -0.033 0
0 0 0.02/ °*

L] L t » > t ]
In addition to eij » the uniform rotation "’ij accompanies the trans-

formation. In the present case, it is given by

t 0 0.088 0
Waes =
1)
-0.088 0
0 (13)
0 0 1] .

The sum of e}:‘j ard w:.:_j is the net distortion B}:.j during the transformation.

Note that an atomistic mechanism of phase transformation defines ng, where-

as only the e;?_j term of sz is considered in the Eshelby theory.

(13)

| @ st m ot 2 At
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4. Results
4.1 Simple Cases
t . .

When eij is given by Eq. (10) and the coordinate system of Fig. 2
is used, the strain energy is divided into the shear component El, and
‘ the dilatational component E2. Using the exact expressions, El and E2
f'.j have been evaluated and are shown as a function of k in Figs. 6 and

7, respectively. The orientation of an oblate spheroid is identified

by the normal to the broad face, e.g., (ZI1)-disc, whereas that of a
prolate spheroid by the long axis, e.g., [110)-needle. Figure 6 shows

| that the values of E, are identical for the (211)- and (I11)-discs and

’ for the [711]- and [T11)-needles. E, is the lowest for these orientations
for disc-like inclusions having small k values, ard increases with increasing
k up to k = 2, after which E decreases slightly. The (011)-disc has the

highest Ep» but El for the [011] needles is the lowest among the needles.
Figure 7 shows the similar r'e\sult for E,p- The lowest value is obtained
for the (2I1) disc at vanishing k. Among needle-like inclusions, the
[121] and [011] orientations had the lowest values of E,. E, either

decreased or increased with raising k for a given orientation. This is
_ in contrast to the strain energy due to dilatation as calculated by

i Nabarro'™) and shown here by a dashed line. The latter exhibits a

. maximum for the spherical shape and a minimum for the thin discs.

The total str'ainenergy,E=El+E2, is plotted against k in
Fig. 8. The lowest energy configuration corresponds to a thin oblate
spheroid with [ZI1] normal to the broad face, or the [2I1]-disc. The
second lowest energy configuration is the [0ll]l-needle. The total strain *
energy for the [2T1]-disc continues to decrease with decreasing k, but that
for the [0l1)-needle approaches the asymptotic value at k > 5.

While a suitable selection of parameters is difficult, the effect
of the interface energy contribution, E, can be assessed to a limited 1

degree. Assuming that the volume of an inclusion is § x 107 cn®, the
. interface energy ¥ = 20 erg/om®, and i = 2 x lo“dyn/m(’,f:smsevaluated




as a function of k. 'I'he‘botalfneeenery,}:r=E+Es,issmvmin

Fig. 9. For this small inclusion size, the minimum of Er exists at
k = 0.37 for the (ZII)-disc.

4.2 The Minimum Strain Energy Configurations

When an oblate spheroid with the broad face normal of [2I1] (the
X, axis) is rotated about [011] (the x, axis) as shown in Fig. 4; the
strain energy of the spheroid varies with the angle or rotation 6 and
has a two-fold rotational symmetry as shown in Figs. 10 and 11. In both
cases, several curves corresponding to different values of k are shown.
Figure 10 was obtianed using the transformation strain of Eq. (10), and
Fig. 11 using that of Eq. (11), respectively.

Figure 10 represents the strain energy of a spheroidal inclusion
transforming to an hcp lattice with the 1deal c/a-ratio. The difference
between the maximmm and minimum values in E tends to vanish with k approach~
ing unity. The minor peak at 6 = 150° is much smaller than the peak at
@ = 55°. The minimum value of strain energy, E ;.» and the corresponding
value of 0 are sumnarized in Table IT. Also shown in the table are the
ranges of 8 &A8) within which E differs less than 1% of the strain energy
for a spherical inclusion with the identical e:j. The strain energy
vanishes at 0 = 0° or 180° and 115° for k = 0. When k is raised to 0.1,
the minimum value of the strain energy increases and two strain energy
minima exist at 6 = 118 and 176.5°. At k = 0.4 and 0.8, only one txroad
minimum is found centering at 6 = 147°, and E is nearly the same within
% 15°. Obviously, no angular dependence exists for the spherical inclusion,

k=1,




an’""I 0 (degrees) t A9 t Ay (degrees) :
i
| 0 0 115, 180 (or 0) 2 4 |
' Eq. (10) 0.1 3.16 x 1073 118, 176.5 3 5
0.4 8.05 x 1073 17 16 8
| 0.8  11.9 x107° 147 15 15
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When the transformation strain [Eq. (11)] corresponding to the
c/a-ratio of 1.586 in the product lattice is used, the angular depen-
dence of the strain energy shown in Fig. 11 was obtained. For the k
values less than unity, two strain energy minima always exist, and the
minor peak at @ = 150° is more prominent than in the previous case.
As listed in Table II, the minimm strain energy orientations shifted

by 9 to 37° between the correspording values determined using the two
t

ei..

: The values ofEminmasingle curve in Figs. 10 and 11 are
identical to each other. The variations of E in With k are shown in
Fig. 12. Below k = 0.1, the values of Em.m differ only slightly, but
the two curves diverge with increasing k. Itisalsoclearthatzm.n
foragivenkislowerwmne:{j of Eq. (11) is employed to produce the
correct ¢/a-ratio for titanium than when e}:_j of Eq. (10) is used for the
calculation.

Results of the strain energy claculations for a doubly rotated in-
clusion are summarized in Figs. 13-15. For presentation of voluminous
data, the values of strain energy are normalized by the maximm strain
energy (En'ax) for a given e}:j and k. The magnitude of E is indicated
by intergers 1, 2, 3, .... 9, which correspond to (0.10 £ 0.01) Fhux'

(002 t 0-01) (0-3 t 0001) saee (000 t 0001) m-
Emax’ Epax? * 0.00 Em'

tively. The locations corresponding to (1.0 - 0.01) Erax 2 indicated
by asterik (%) marks, while that of Ein is given by a plus (+) mark.

Figs. 13 and 1% show the positions of various levels of E as a function
of 0 and ¥, which are taken at 5° intervals. In terms of the standard
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stereographic projection, 6 corresponds to the longitude and ¥ to the
latitude; i.e., ¥ = 0 indicates the equator and ¥ = + 90°, the North
and South poles of a Wulff net. Fig. 13 presents the mapping of E for
the case when the e}:_j of Eq. (10) is used. The values of k, K /uVy
and Em.n/uVI are also given, and k is zero for Fig. 13a ard is 0.1

for Fig. 13b, respectively. Similar mappings for the egj of Eq. (11)
with k = 0, 0.1, 0.4 and 0.8, respectively, are shown in Figs. l4a
through lud. More detailed mappings are shown in Figs. 15a and 15b,
which present the normalized values of E for the range of

-10°S © S 20° and |¥] &+ 10° at 1° intervals. The magnitude of E is
given by an integer between 0 and 1000, where the latter corresponds to
the E value at 6 = =10° and ¥ = * 10°,

From Figs. 13 and 14, it can be seen that the strain energy minima
appear only at the locations predicted in Figs. 10 and 11 with ¢ = 0.
However, the low energy orientation spreads over a range of 6 and ¥
from the minimum energy orientation. This is best illustrated in
Figs. 15a and b. E_; is located at 6 = 9° and ¥ = 0, but within the
regionofAO:i2°andAw=:tu°,thevalueofEinweasesover~Enﬁ_n
less than 1% of E of a sphere with the identical e}; and Vy. The
corresponding ranges of A8 and A$ for other values of k and egj are
listed in Table II. For the two choices of e:-:_j employed, the low
energy orientation for thin discs (k € 0.1) is located over a wider
range of ¢ than that of 0.
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§. Discussion
5.1 Effects of Rotational Components
When the transfcrmation strain et:j is given, Eshelby(m) showed
that the uniform rotation mc f WS uS .) in the inclusion is
133 J s
written as
= t
1 anz e (1u)

The only non~-zero components of nijk!. are n1212, Iy303s 111313 in a
coordinate system whose axes coincide the principal axes of the
ellipsoidal inclusion. These are given in terms of elliptic intergrals
by, e.g.,

111212 = -112112 = (I - Ia)/B‘ll’ . (15)

Since the rotational components of the transformation distortion must
be substracted in order to apply the Eshelby theory, the uniform rotation
in the inclusion from the original lattice, “ﬁj s is given by

I (&) t

wij = wij - Uij . (16)

This rotational term must be considered in comparing the results of the
previous section to the crystallographic orientations determined ly
experiment.

In both the e, enployedintheabovecalml&tmofﬂ,tMonly

non-zero oontm.mtmn to ”ij arises from el2 = 0.088, ard is
(o] t
Wy T g = 2 e, My, - oly an
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The angle of rotation ¢, about x, axis becomes

¢, = tan™t (-0{2) . (18)

The rumerical results are given in Table III, which shows that
the rotational correction amounts to only 1.05° for k = 0.1, and

vanishes for k = 0.

TABLE III

& Rotational Corrections (for e§2 = 0.088)

1

k L0 W o s (degrees)

0 0.5000 0.0 0.0 ‘

0.1 0.3956  -1.837 x 1072 1.05 z
!

0.4 0.1912  -5.436 x 1072 Y ‘

0.8 0.0458  =7.99% x 1072 4,57

s

5.2 Habit Planes and Shape Deformation

The minimum strain energy configuration of a spheroidal inclusion
% correspords to the most likely geometry of the new phase, when the
' interface energy contribution to the nucleation process can be ignored.
If the interface energy contributes significantly, its effect must be

evaluated as was done in Section 4.1, However, the orientation depen-

U ST A e L R A 2 B MR, P

dence of the interface energy is generally unknown. If the interface i
energy is assumed to be independent of orientation, the most favored :‘

- Ak Rt

1
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orientation of the new phase is essentially governed by the strain
energy except for the fact that an optimum value of the aspect ratio
exists where the sum of the strain energy and interface energy contri-
butions is minimized.

Considering the -transformation strain of Eq. (11) that corresponds

to the c/a-ratio of 1.586 for the product phase, the strain energy
minimum exists, when the broad face of the spheroidal inclusion (k = 0)
is parallel to (9 9 13)B. When the aspect ratio is increased to 0.1, the
minimum strain energy orietation is shifted by 4° to (9 9 1u)B including

the effect of ¢5. These orientations are shown in Fig. 16a together with

the ranges of orientations where E increases over E in less than 1% of

E of a sphere with identical ei'J? and VI.

a hatched area (k = 0) and by a shaded area (k = 0), respectively. The

These ranges are shown by

present result of (9 9 13)B habit plane is almost identical to experi-
mentally determined habit planes obtained by Newkirk and Geisle.\:*(l‘r’)

and by Liu. (16 The observed habit plane orientations are indicated
in Fig. 16b by a filled triangle [the (8 8 11); orientation] and by a

A R Sy

hatched area, respectively. The range of observed habit plane orientations
shown by a shaded area is due to Gaunt and Cnristian,(l” whereas a double
circle represents the result of Williams et al. [the (8 9 12)B orientation](le)
ard a filled square that of van Ginneken,(lg) [the (569)p orientation].

All the observed habit plane orientations are within a few degrees of

the predicted low energy regions, indicating an excellent agreement between
theory and experiment. It is also significant that the predicted orienta-

tions of low strain energy are not confined to a narrow zone. This is

again in accord with experiment, since it has been recognized that the
observed scatter of habit planes is beyond the limit of experimental

error.
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et

The predicted habit plane of the Bowles-Mackenzie analysis for

. pure titanium is (8 9 12)3(20) and agrees with the observed one reported

| by Williams et al.(le) However, the agreement hinges upon a suitable
choice of the adjustable dilatation parameter, which amounts to 0.7%. The
f | lattice invariant shear plane in the above analysis is {IOII}H. Twins

7 on {1011}H in Ti martensite have been indeed observed by transmission

' electron microscopy, but their thickness is of such magnitude that

] » it is difficult to interpret them as the lattice invariant shear. 11

! The Bowles-Mackenzie prediction of the habit plane is rather close to
the predicted low energy orientations of the present analysis. This is
perhaps not surprising since it is expected that the invariant plane
strain condition postulated by the Bowles-Mackenzie analysis should

approximate the strain energy minimum condition.

The total shape distortion in the new phase, Bi':Ii" is given by the sum
of e‘i:j and w]I_J in the present analysis. For the above case where €3 of
Eq. (11) is used, Bi'jl‘ becomes
0 0.088 O 1
BT =
0 0 0 :
for the case of k = 0 and 3
e
0.005 0.0%6 O
T . -
Bij = 0.092 0.037 O (20b)
0 0 0

for the case of k = 0.1.
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The sum of Big ard an identity matrix corresponds to the total shape

deformation F in the crystallographic theory. As a comparison, Bi'J? i

(20) .

obtained from the analysis on pure Ti by Bowles amd Mackenzie

given in the same coordinate system by 1

N

-0.1075 -0.0618 0.0709
B.. = 0.0550 0.0268 -0.0388 (21)

-i -0.0658 0.0405 0.039%4

.It is clear that Bi?]‘ in the Bowles-Mackenzie analysis is not optimized %
for the strain energy minimum, as the strain components of Bigl are al-
3 in the present analysis.

A comparison of the two Bij 's indicates that, although the net dilatation

! most universally greater than those of e(i:-

(B‘& + Bzg + Bsg) differs only slightly, a large contraction along the
[lf[l]}3 and a substantial expansion along the [011]; are present in the
Bi%‘ for the Bowles-Mackenzie analysis [Eq. (21)]. The corresponding

dilatation parameters iii the present analysis are zero. The origin of
such a difference can be traced to the processes of lattice transformation
in the arystallographic theory, where the invariant plane strain condition
is accomplished by adjusting the dilatational strain components. This

approach is in a sharp contrast to the present one where the transformation

strain is chosen by minimizing atomic movements involved. It is also
evident that the dislocation concept of shear transformation is completely

absent in the lattice transformation stage of the crystallographic theory.

It is invoked only during the lattice invariant shearing. This is why it

is so difficult to reconcile the crystallographic theory with the atomistic




or dislocation concept of martensitic transformation. The former
achieves the lattice transformation via pure strain (e.g., the Bain
distortion), whereas the latter contends the major changes to be due to
the motion of transformation dislocations. In the present theory, e;?_j

arises from the atomistic concept, which is therefore an integgral part

of the theory.

5.3 Needle- and Lath-Type Precipitates of a-Ti

When a concentrated solution of Ti with Mo, V and other so-called
B-stabilizers is solution-treated and aged in a o + B phase region, needle-
and lath-type precipitates of o-Ti are found in the a-Ti matrix. The long
axis of these precipitates is aligned along (llO)B, and the Burgers rela-

(11)

tionship is satisfied in most of the instances investigated. When

the aging was performed at relatively low temperatures (430-480°C for

2D

a Ti-18Mo alloy and 480-540°C for Beta-III Ti alloy), Rosales
noted that the alloy partitioning considerably lags behind the B to a
transformation and suggested a shear transformation mechanism. Since the

lattice correspondence is identical, the present analysis also applies to

the a-precipitation. The results presented in Section 4.l indicate that,

while a disc-shaped inclusion has the lowest strain energy, a needle-

shaped inclusion along (llO)B are the preferred geometry. It is not known E
what causes the needle- and lath-type precipitates to be most stable, but

it is naturally expected that the diffusion of solute atoms, the nature of

nucleation sites such as grain boundaries, the structure of a-B phase

boundaries and precipitate growth mecharism have as much influence as the

strain energy. The k-dependence of E as shown in Figs. 6-9, however,




presents one possible explanation. If the muclei of a~precipitates
(21) the th
of (llo)B—needles is preferred over that of (112);-discs according to

have semispherical geametry as proposed by Rosales,

the present results (cf. Fig. 8). This is due to a higher value of
~dE/dk for the needle geometry in comparison to that for the disc
geametry when k is close to unity; that is, the rate of reduction of E

is greater for the growth of (llO)B-needles.

5.4 General Discussion

The theory described in this paper represents a significant de-
parture from the crystallographic theory or from the interface dislocation

models. (22,23)

It combines the atomistic transformation mechanism based
on dislocation movement and the crystallographic features of transforma-
tion through the suitable selection of the transformation strain tensor.
The theory can be extended to othermartensitic transformations, some of

which are being investigated by the present authors.

The present theory can be refined by considering the elastic constants
of an inclusion, which differ from those of the matrix. This refinement
can be done within the framework of the Eshelby theory.1?) e next
extension of the theory will involve the consideration of elastic aniso-
tropy. The general theory for anisotropic inclusion problems has been
developed by Kinoshita and Mira.‘®)  Although a few specific solutions

for a spheroidal inclusion have been reduced to line integr\als,(zs)

these
are not immediately applicable to martensitic transformation problems.
This is due to the symmetry requirement for the elastic consta:nts. Only
the spheroidal inclusions whose major axes coincide with the cube axes can

be treated by the solutions available.

.
[V P
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An entirely different approach to the transformation problem has

been developed by Khachaturyan.( 8) The theory utilizes the computation
of elastic strain energy in the reciprocal space. A general solution is
obtained for an inclusion problem in the anisotropic elasticity and a
specific solution is given for a tetragonal dilatation in the cubic
symmetry. A similar approach has been successful in the analysis of

the omega transformation in Ti and Zr alloys. (26,27)

However, the
application of this theory to martensitic transformation problems

requires a substantial effort in the future.

6. Conclusions

1. The total strain energy in matrix and a spheroidal inclusion
is determined by using the Eshelby theory. Approximate formilae and a
parametric expression for E are obtained by evaluating elliptic integrals.

Numerical results for an oblate spheroid are included for the most general

form of the transformation strain, eig.
2. The atomistic transformation mechanism is combined with the
Eshelby theory to provide a new approach to the analysis of martensitic
transformation. The correspondence and distinctions between this new
theory and the phenomenological crystallographic theory are clarified.
3. Specific eig for the bec-to-hep transformation in Ti and its
alloys is obtained. The habit plane is predicted on the basis of the

strain energy (and interface energy) minimization principle. The results

are in excellent agreement with experiment.
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B FIGURE CAPTTONS

(10) g the

Fig. 1 Schematic representation of the Eshelby theory
(1a)

corresponding processes in the crystallographic theory.

Fig. 2 Coordinate axes employed and an oblate spheroid with the broad
1 face //(Z11)g.

Fig. 3 Strain energy coefficients for an oblate spheroidal inclusion.
Fig. u4 The rotation of the coordinate axes about the Xy axis.

Fig. 5  Atomic arrangements on {llO}B, {110}13 after shearing and (0001)y .
Burgers relationship is maintained in the atomic movement.

Fig. 6 Strain energy El due to a shear component e§2 against k.
Fig. 7 Strain energy E2 due to a dilatation component egz against k.

Fig. 8 Total strain energy E against k_et of Eq. (10) was used ard E is

. t i3
expressed in terms of ey

Fig. 9 The sum of E and the interfacial energy, Er,against k.

Fig. 10 The variation of E due to rotation about the Xq axis, using e'gj ;

of Eq. (10). k values are given in the figure, and 6 = 0 :
corresponds to [2I1]-disc and 6 = 90° to [1I1]-disc. f;

Fig. 11 The variation of E due to rotation about the X3 axis, using e}j
of Eq. (11).
. t o s as
Fig. 12 The k-deperdence of Emin' eij used is indicated.

Fig. 13 The strain energy mapping with respect to 6 and y. ezj is given
by Eq. (10). K locations are given by (*) and Ein DY ().
(a) k=0 (b) k = 0.1. f

Fig. 14 The strain energy mapping using e}zj of Eq. (11). (a) k = 0,
(b) k=01 (¢) k=04 (d) k = 0.8.

Fig. 15 Details of Figs. 14a and b, in the vicinity of 8 = ¢ = 0.

Fig. 16 (a) Habit planes predicted by the present theory
(b) Experimentally determined habit planes.
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DISC (371): ASPECT RATIO k = b/c (a = ¢)

2 Coordinate axes employed and an oblate spheroid with the broad
face //(711)8.
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Strain energy coefficients for an oblate spheroidal inclusion.




o nm r —————— -~

R

e ey T =

1M

211

nt
217

ROTATION OF (211)—-DISC ABOUT x3 AXIS <011>

Fig. 4 The rotation of the coordinate axes about the X, axis.
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Fig. 9 The sum of E and the interfacial energy, Er,against k.
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is given

by Eq. (10). E%am locations are given by (*) and Ein by (+).

(@) k=0 (b) k = 0.1.

t

ith respect to 9 and V.

'3

in energy mapping w

The strai

Fig. 13
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Fig. 14 The strain energy mapping using e;. of Eq. (11). (a) k
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Fig. 16 (a) Habit planes predicted by the present theory
(b) Experimentally determined habit planes.






